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BACKGROUND: Drinking water and other sources for lead are the subject of public health concerns around the Flint, Michigan, drinking water and
East Chicago, Indiana, lead in soil crises. In 2015, the U.S. Environmental Protection Agency (EPA)’s National Drinking Water Advisory Council
(NDWAC) recommended establishment of a “health-based, household action level” for lead in drinking water based on children’s exposure.
OBJECTIVES: The primary objective was to develop a coupled exposure–dose modeling approach that can be used to determine what drinking water
lead concentrations keep children’s blood lead levels (BLLs) below specified values, considering exposures from water, soil, dust, food, and air.
Related objectives were to evaluate the coupled model estimates using real-world blood lead data, to quantify relative contributions by the various
media, and to identify key model inputs.
METHODS: A modeling approach using the EPA’s Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia and Integrated
Exposure Uptake and Biokinetic (IEUBK) models was developed using available data. This analysis for the U.S. population of young children
probabilistically simulated multimedia exposures and estimated relative contributions of media to BLLs across all population percentiles for sev-
eral age groups.
RESULTS: Modeled BLLs compared well with nationally representative BLLs (0–23% relative error). Analyses revealed relative importance of soil
and dust ingestion exposure pathways and associated Pb intake rates; water ingestion was also a main pathway, especially for infants.
CONCLUSIONS: This methodology advances scientific understanding of the relationship between lead concentrations in drinking water and BLLs in
children. It can guide national health-based benchmarks for lead and related community public health decisions. https://doi.org/10.1289/EHP1605

Introduction

Background
The U.S. Environmental Protection Agency (EPA), Centers for
Disease Control and Prevention (CDC), and American Academy
of Pediatrics agree that there is no known safe level of lead (Pb)
in a child's blood; even low levels of Pb in the blood can result in
behavior and learning problems, lower IQ and hyperactivity,
slowed growth, hearing problems, and anemia (www.epa.gov/
lead; http://www.cdc.gov/nceh/lead/; Council on Environmental
Health 2016). Triantafyllidou et al. (2014) concluded that low
levels of Pb in drinking water could pose a human health concern
in sensitive population groups (e.g., young children and particu-
larly formula-fed infants). Drinking water and other exposure
sources for Pb have recently been the subject of public health
concerns around the Flint, Michigan, drinking water (Hanna-
Attisha et al. 2016; Laidlaw et al. 2016) and East Chicago,
Indiana, Pb in soil (Goodnough 2016) crises. As part of the
EPA’s Safe Drinking Water Act assessment of lead in drinking
water, the National Drinking Water Advisory Council
(NDWAC)’s Lead and Copper Rule (LCR) Working Group was
established to provide advice to EPA in considering potential
revisions to the LCR. In December 2015, NDWAC recom-
mended establishment of a “health-based, household action level”

for Pb in drinking water based on children’s exposure (NDWAC
2015). The NDWAC working group recommended that “water
systems would be required to notify the consumer, state drinking
water program, and the local public health agency if this level
were exceeded. The expectation is that individuals and local offi-
cials would use this information to take prompt actions at the
household level to mitigate lead risks. . . .” While the EPA has
not yet determined the specific role of a health-based benchmark
for Pb in drinking water in the new rule, the agency sees value in
providing states with drinking water systems and the public with
a greater understanding of the potential health implications for
vulnerable populations of specific levels of Pb in drinking water.
The EPA anticipates that a health-based benchmark could also
help inform other potential elements of a revised LCR, including
public education requirements, prioritization of households for
lead service line replacement programs or other risk mitigation
actions at the household level, and potential requirements related
to schools or other priority locations (U.S. EPA 2016a). To guide
a potential health-based benchmark for Pb in drinking water, an
approach is needed to advance scientific understanding of the
relationship between Pb concentrations in drinking water and
blood lead levels (BLLs) in infants and young children.

Objectives
The primary objective was to develop a coupled exposure–dose
modeling approach that can be used to determine what drinking
water Pb concentrations keep exposed children’s BLL below speci-
fied target values, considering exposures from multiple media
(water, soil, dust, food, air). There is no acceptable level of Pb in
children; selected target values here relate to the CDC blood Pb
reference value, currently 5 lg=dL at the 97.5th percentile of BLLs
in U.S. children (cdc.gov/nceh/lead/acclpp/blood_lead_levels.htm).
The CDC is considering changing the reference value to 3:5 lg=dL
(ATSDR 2016). Related objectives of this analysis were to evaluate
the coupled model estimates using EPA NHEXAS [National
Human Exposure Assessment Survey (Clayton et al. 1999)] and
CDC National Health and Nutrition Examination Survey
[NHANES (CDC 2013a, 2013b, 2016)] BLL data, to quantify rel-
ative contributions by the various media, and to identify key model
inputs. Our main hypothesis was that the Stochastic Human
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Exposure and Dose Simulation (SHEDS)-Multimedia Model
(https://www.epa.gov/chemical-research/stochastic-human-
exposure-and-dose-simulation-sheds-estimate-human-exposure), the
probabilistic exposure model that was previously evaluated and
applied for other chemicals, coupled with the Integrated Exposure
Uptake and Biokinetic (IEUBK) Model (https://www.epa.gov/
superfund/lead-superfund-sites-software-and-users-manuals), can
estimate BLLs comparable to observed BLL data, i.e., with a rela-
tive error <50%. A second hypothesis was that results from this
coupled modeling approach can inform a health-based benchmark
for Pb in drinking water considering a multimedia risk cup
approach (a conceptual approach for estimating total Pb exposures
and risks, aggregated from different sources), and provide a better
understanding of the relative importance of exposure pathways
and data needs to guide public health decisions for reducing child-
hood Pb risks.

While this work pertains to the U.S. residential (civilian) pop-
ulation, the same approach could be applied to other populations
and countries, depending on available data. This analysis was not
designed for specific at-risk populations or households, but some
evaluation and contribution analysis results are provided with re-
gional scale (NHEXAS Region 5) data in addition to national
scale. The focus of this paper is the modeling and multimedia ex-
posure analysis methodology; results are provided for several
selected BLLs and percentiles of the population (based in part on
the CDC blood Pb reference value mentioned above).

Methods

Models Used
A probabilistic modeling approach was developed and applied to
quantify and analyze children’s Pb exposures and BLLs from
drinking water and other environmental media (soil, dust, food,
air). The analysis used the EPA’s SHEDS-Multimedia (version
4.1; U.S. EPA) coupled with the IEUBK (version 1.1, build 11;
U.S. EPA). The SHEDS-Multimedia model is a physically based
probabilistic Monte Carlo exposure model that can simulate ag-
gregate or cumulative exposures over time via dietary and resi-
dential routes for a variety of multimedia environmental
chemicals using real-world data (i.e., human activity diaries,
measured concentration data, exposure factors) for model inputs.
SHEDS-Multimedia has been applied for various pesticides, met-
als, and polychlorinated biphenyls in research applications and to
inform EPA regulatory decisions (Xue et al. 2010, 2012, 2014a,
2014b; Zartarian et al. 2006, 2012; Glen et al. 2012). It has been
well evaluated against real-world data (e.g., blood biomarker
measurements), peer reviewed by multiple EPA external scien-
tific advisory panels (www.epa.gov/sap), and published in over
30 journal articles. These published SHEDS-Multimedia sensitiv-
ity analysis and model evaluation analysis methods were used in
this Pb application. The IEUBK model for estimation of child-
hood BLLs has also been externally peer reviewed and used for
agency regulatory purposes (U.S. EPA 1994a, 1994b; Hogan
et al. 1998; White et al. 1998; NRC 2005). It predicts childhood
BLLs resulting from multiple pathways of exposure and supports
soil clean-up levels at Superfund sites.

The general consensus of a 1999 workshop was that a fully
probabilistic version of the IEUBK model would aid in under-
standing how exposure variability affects the distribution of BLL
(NRC 2005, p. 239). SHEDS-Multimedia complements IEUBK
by considering human exposures probabilistically. Coupling
these models allows for simulating variability in Pb exposures
and doses for different pathways, allowing identification of key
model input variables and analysis of relative contribution by
media and exposure pathways to BLL for different age groups

and population percentiles. While SHEDS-Multimedia is a two-
stage Monte Carlo model, we chose to not conduct a quantitative
uncertainty analysis for the multimedia Pb analysis at this time,
given the major effort involved to characterize level of confidence
in each key input and conduct uncertainty simulations and analy-
ses (Xue et al. 2006); thus, we present uncertainties and limita-
tions qualitatively in the “Discussion” section of this paper.

Approach Overview
Figure 1 illustrates the general approach for this coupled model
analysis. The top three panels illustrate the SHEDS-Multimedia
exposure modeling methodology as described in Zartarian et al.
(2012). Monte Carlo sampling was applied to obtain population
variability distributions of exposures by pathway, from which
available intake was determined and summed across pathways to
compute uptake. Regression equations derived from IEUBK
were applied to convert absorbed dose (uptake) to BLL. See
Supplemental Materials Section S1, Table S1, and Figure S1
for details on the SHEDS–IEUBK coupling methodology and
model inputs used in the analysis. Modeled BLL was plotted
against water Pb concentration for a specified percentile of the
population to determine the water Pb concentration that keep
BLL below specified values. This process was repeated with dif-
ferent assumed water concentrations to identify the relationship
between concentration and resulting BLL at the specified popula-
tion percentile (Figure 1, bottom left panel). The red horizontal
lines in this panel illustrate several target BLL values; the values
on the curves intersecting the target BLL values represent the tip-
ping point water Pb concentrations that keep BLL below speci-
fied levels.

Data Used in the Modeling Analysis
Available data from various sources were used for children’s ac-
tivity patterns, Pb concentrations in different media, exposure
factors, and biokinetic dose factors; distributional inputs were
based on measurements collected in EPA and other federal
agency field studies, or reported in published literature (see
Supplemental Materials S2 and Tables S3–S5). Age-specific
model inputs were used where available. We simulated infants (0
to 6 mo of age) per NDWAC recommendation, but there is more
uncertainty for this age group. We used activity diaries from
Consolidated Human Activity Database and NHANES for this
age group, but due to lack of exposure factor data, we assumed
the same soil/dust ingestion rate as for 1-y-olds. Separate model
analysis results were generated for different scenarios. The age
groups considered were 0- to 6-mo-olds, 1- to <2-y, 2- to <6-y,
and 0- to 7-y-olds (lifetime average, 0–84 mo). Exposure scenar-
ios considered included Pb in drinking water only and aggregate
exposures from Pb from water, soil, food, dust, and air. Several
types of SHEDS–IEUBK runs were conducted: a) for model
evaluation, a national-scale analysis using NHANES data, and a
regional-scale analysis using NHEXAS Region 5 data; b) for ana-
lyzing relative contributions by exposure pathway in the United
States and NHEXAS Region 5; c) for sensitivity analyses to iden-
tify key factors; and d) for national-scale runs with a set of alter-
native drinking water Pb concentration scenarios to develop the
linear relationships between concentration and BLL percentiles,
shown in the bottom left of Figure 1.

Model Averaging Time and Addressing Biological
Variability in the Coupled Models
Initial analyses were conducted with 2-d model averaging times,
given available activity diaries used in SHEDS-Multimedia; we
subsequently focused on 30-d averaging time simulations
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consistent with the IEUBK period, per recommendations of a
work-in-progress peer consultation panel (Versar, Inc. 2016).
The 30-d analysis results are shown below, and 2-d analysis
results are provided in Supplemental Materials for comparison;
pros and cons of both are in the Discussion. IEUBK blood Pb
estimates do not reflect interindividual behavioral and pharmaco-
kinetic differences; a geometric standard deviation (GSD) of 1.6
is applied to outputs to account for biological variability and
measurement error, but does not account for exposure variability
(Hogan et al. 1998; White et al. 1998). The SHEDS–IEUBK
modeling only represents exposure variability; thus, a variability
factor is needed to reflect real-world BLLs that also account for bi-
ological variability (this term may also account for other sources
of variability, such as measurement and/or model error), and this
factor is affected by the model averaging time period.

From the model evaluation results comparing SHEDS–
IEUBK BLL estimates vs. NHANES-measured BLLs, the GSDs
are 1.64 and 1.62 for 1- to <2-y-old and 2- to <6-y-old groups,
respectively, while GSDs for NHANES BLLs are 1.92 and 1.89
for those two age groups, respectively (presented in the “Results”
section below). These results indicate that GSDs of the real-

world BLL measurements are consistently higher than those of
predicted BLLs for both age groups, i.e., GSDs of 1 to <2 y and
2 to <6 y are almost the same for the two age groups, and the dif-
ference between NHANES and SHEDS–IEUBK BLL GSDs is
∼ 0:3 for both age groups. This implies biological variability was
missing in our original 30-d averaging time BLL predictions, since
only exposure variability is accounted for in coupling SHEDS-
Multimedia and IEUBK; the missing variability will affect the dis-
tribution of the BLLs and high percentiles. Thus, we used the
GSDs of NHANES BLL data as the standard to calculate the miss-
ing biological variability as shown in the equations below. We
assumed exposure and biological variances are independent, and
the distribution is lognormal. In the log–transformed space:

ðQtotalÞ2 = ðQeÞ2 + ðQbÞ2

Q2
total: total variance

Q2
e: exposure variance

Q2
b: biological variance

This is the formula that was used to calculate the biological
variance by age group:

Figure 1. Illustration of Stochastic Human Exposure and Dose Simulation (SHEDS)–Integrated Exposure Uptake and Biokinetic (IEUBK) modeling to inform
a health-based benchmark for Pb.
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Q2
b = ½ðQtotalÞ2 − ðQeÞ2�

Q2
b = f½lnðGSDNHANES bloodÞ�2 − ½lnðGSDSHEDS predictionÞ�2g

= f½lnð1:92Þ�2 − ½lnð1:64Þ�2g=0:185 ð1-y-oldÞ
Q2

b for 1- to <2-y-olds and 2- to <6-y-olds are 0.185 and
0.176, respectively, which is generally consistent with biological
variance, 0.22, specified by IEUBK {GSD=1:6 and ½lnð1:6Þ�2 =
0:22}. We redid our original 30-d model assessment with the
above calculated biological variances for model evaluation and
prediction of BLLs with daily averaged household tap water Pb
concentration.

Results
Results below and in Supplemental Materials demonstrate the
SHEDS–IEUBK modeling approach.

Model Evaluation
For evaluating or ground-truthing national scale estimates of
BLLs using the SHEDS–IEUBK coupled model approach, we
used NHANES 2009–2014 BLL data. Performance of the
coupled models at the national scale was evaluated by the rela-
tive error between estimated BLLs and observed BLLs (i.e., the
difference between the estimated and observed BLL divided by
the observed BLL value). Available representative Pb concentra-
tions for food (U.S. FDA 2014), soil and dust (HUD 2011), and
water (U.S. EPA 2010) were used for model inputs. For 30-d
exposure time frame analyses, we used correlated inputs for
soil, dust, and water Pb concentrations (see Table S5). The rela-
tive error in BLL was 0–23%, depending on age and percentile
(see Figure 2 and Table 1; note that for 2-d analyses not consid-
ering biological variability and possibly overestimating expo-
sure variability, relative error was <10% for all percentiles and
age groups as shown in Table S6, Figure S2). SHEDS–IEUBK
modeling underestimated BLL for NHANES 2009–2010 sam-
pling period data, overpredicted for 2013–2014, and better pre-
dicted for 2011–2012 (Figure S3 and Figure S4). Additional
model evaluation results (e.g., with NHEXAS data) are pre-
sented in Table S7; for the regional-scale analysis, relative error
was 35–42%, depending on age and percentile.

Relative Exposure Pathway Contributions
The modeled exposure pathway contribution analyses revealed
that for children older than 1 y, the soil/dust ingestion and food
ingestion pathways contributed more to BLL than drinking
water, and the air pathway contributed the least with a small
amount. For higher percentiles of the BLL distribution, soil/
dust ingestion is the major pathway. Water ingestion is also an
important contributor, especially for infants. For context, the
CDC currently has a reference BLL for 1- to 5-y-olds of
5 lg=dL based on the distribution of BLLs in the United States;
this is the reference level at which CDC recommends public
health actions be initiated. As shown in Figure 3, for the national
analyses:

• For 0- to 6-mo-olds, soil/dust and water ingestion pathways
predominate at the highest BLL percentiles. At the 90th to
100th percentiles with 2:66 lg=dL median predicted BLL
(range: 2.15 to 8:50 lg=dL), soil/dust and water account for
∼ 52% and ∼ 39%, respectively. At the 70th–80th percentile
or 1:49 lg=dL median predicted BLL (1.35 to 1:66 lg=dL),
soil/dust and water ingestion together account for ∼ 80%
of Pb exposure. Soil/dust, food, and water ingestion have

similar contributions up to the ∼ 50th percentile of the pop-
ulation at ∼ 0:90 lg=dL predicted median BLL (0.83 to
0:97 lg=dL). Food intake is a background exposure
accounting for ∼ 10–25%, depending on the BLL percen-
tile, and food intake accounts for ∼ 0:1–0:3 lg=dL of BLL.

• For 1- to <2-y-olds, soil/dust ingestion was the dominant
pathway above the ∼ 80th BLL percentile. Above the 90th
BLL percentile or 3:26 lg=dL predicted median BLL (2.39
to 16:7 ug=dL), soil/dust, food intake, and water account
for 77%, 16%, and 7%, respectively. Food intake was a
major contributor below the ∼ 70th percentile BLL, and
contributed ∼ 0:6 lg=dL, on average, across all percen-
tiles. Water accounted for ∼ 10–15% of the BLL, depend-
ing on the percentile, and contributed ∼ 0:2 lg=dL on
average.

• Not illustrated in Figure 3, the pathway contributions for 2-
to <6-y-olds were essentially the same as for 1- to <2-y-olds
(see Figure S5).
Additional contribution analysis results with NHEXAS

Region 5 data are presented in Figure S6.

Key Model Inputs Identified by Sensitivity Analyses
Model results were most sensitive to dietary inputs for lower per-
centiles and soil/dust ingestion inputs for higher percentiles of
BLL distributions, as illustrated in Figure 3. Sensitivity analyses
showed soil/dust ingestion rate, soil Pb concentration, food Pb
intake, and bioavailability are key inputs. Food Pb intake was
highly sensitive to methods for handling nondetects (see Table
S8). For soil/dust ingestion rates, the most influential input con-
sidered for the coupled model outputs, we did an additional sensi-
tivity analysis using the central tendency value of 100 mg=d
suggested by U.S. EPA (2011) and also 80 mg=d, and found the
3:5 lg=dL BLL targets at the 97.5th percentile were exceeded
without drinking water Pb. Similarly, targets were exceeded with
a sensitivity analysis using von Lindern et al. (2016) soil/dust
ingestion rates for 1 to <2 y (see Table S9 and Figure S7); this
analysis also found SHEDS–IEUBK overestimated NHANES
BLLs. The sensitivity analyses show that the blood Pb prediction
for 0- to 7-y-olds is very sensitive to soil/dust ingestion rate when
it was scaled from the input based on Özkaynak et al. (2011) to
80 mg=d; for example, at the 97.5th percentile, the daily aver-
aged tap water Pb concentration that could keep BLL below
5 lg=dL was reduced from 5 ppb to 1 ppb (see Table S10).
Details on these inputs and sensitivity analyses are provided in
Supplemental Materials. There are three current approaches for
estimating soil/dust ingestion rate as described in U.S. EPA
(2011); this variable is highly uncertain for children under age
2 y.

Drinking Water Lead Concentrations at Example Target
Blood Lead Levels
Figure 4 and Table 2 show SHEDS–IEUBK results for estimated
maximum daily average household tap water Pb concentrations
that could keep BLL below specified targets (30-d averaging
time); these were derived as described with Figure 1. Figure 4
illustrates the predicted BLL at the 97.5th percentile of the U.S.
population as a function of daily average household tap Pb water
concentration for the different age and exposure scenarios. These
plots allowed us to extract the daily average water Pb concentra-
tion that could keep BLLs below the specified targets of 3.5 and
5 lg=dL at the 97.5th percentile BLL of the U.S. population of
each age range, as shown in Table 2. The dashes in Table 2 for
three aggregate scenarios indicate that even with no Pb in water,
this target would be exceeded. The robustness of this modeling
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approach allows consideration of household tap water Pb concen-
trations for other percentiles. However, the numbers in Table 2
could be conservatively low because key model input values

based on the available older data (e.g., soil and dust concentra-
tions, and soil/dust ingestion rate) may be higher than they are
currently.

Figure 2. Evaluation of Stochastic Human Exposure and Dose Simulation (SHEDS)–Integrated Exposure Uptake and Biokinetic (IEUBK) modeled blood lead
levels (BLL) vs. National Health and Nutrition Examination Survey (NHANES) 2009–2014 BLL for different age groups. conc., concentration.
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Discussion
This paper presents a state-of-the-science methodology that can
guide a health-based benchmark for Pb in drinking water and can
also be applied to other media. The well-reviewed, published,
evaluated models allowed for contribution and sensitivity analy-
ses, and identification of key factors, media, and exposure path-
ways. The coupled SHEDS–IEUBK estimates compared well
against BLL data from NHANES and NHEXAS (0–23% and
∼ 36–42% relative error, respectively), despite compiling differ-
ent input data sets not originally intended for this purpose. The
ability to probabilistically simulate multimedia exposures for the
U.S. population and provide blood lead predictions consistent
with NHANES BLLs represents an advance in science and a
potential to guide public health decisions. Human exposures and
public health outcomes are considered in the EPA’s Pb policies,
such as the LCR. For example, revisions underway to strengthen
the LCR include a potential health-based benchmark for Pb in
drinking water and assessment of the benefits of lead service line
replacement programs. Recent surveys [conducted in 2011 and
2013 and discussed in Cornwell et al. (2016)] conducted by the
American Water Works Association indicate that between 15 to
22 million people of the 293 million served by U.S. community
water systems have either full or partial Pb-containing lines serv-
icing their home (7%) (Cornwell et al. 2016). The SHEDS–
IEUBK multimedia exposure modeling analysis approach pre-
sented in this paper could inform national rulemaking efforts that
translate to the local scale through state and local drinking water
programs. If communities with water Pb issues are aware that
soil and dust Pb can also be important contributors to children’s
BLLs and understand the limits of drinking water program
efforts, community-level education and outreach efforts can be
targeted to maximize multimedia exposure reduction efforts for
minimizing children’s Pb risks.

Another strength of this SHEDS–IEUBK analysis is that it
uniquely reports percent contribution to children’s BLL by path-
way, population percentile, and age group. The EPA’s 2007 Risk
and Exposure Assessment for Lead did provide an urban case
study of Pb pathway contributions with estimates of 20.5% of Pb
from diet, 11.9% from drinking water, 43.7% from outdoor soil/
dust, 23.7% from indoor dust, and 0.1% from air by inhalation
(based on average annual uptake from each media until a child is
7-y-old and assuming a 0:05lg=m3 maximum monthly average
airborne Pb) (U.S. EPA 2007). There are a number of papers
reporting on the importance of the soil/dust pathway to BLL of
children as described in U.S. EPA (2013) and references therein
(e.g., Mielke et al. 2011). The relative media contributions at the
upper percentiles of SHEDS–IEUBK estimates for >1-y-olds are
consistent with the U.S. EPA (2007) results; we estimate dietary
contribution greater in lower percentiles, and water contribution
higher for infants 0–6 mo of age. However, contributions from
pathways are highly dependent on scenarios being considered
(e.g., Elwood et al. 1984; Mielke et al. 2011; Zahran et al. 2013).

Isolated events and widespread occurrences of drinking water
contaminated with Pb have been associated with and thought
to be the dominant contributor to elevated BLLs in North
Carolina, Maine, Michigan, and Washington, DC (Edwards et al.
2009; Hanna-Attisha et al. 2016). Additionally, underestimates
of the contribution to BLL from Pb-contaminated water may
occur due to potential indirect exposure from food preparation
(Triantafyllidou and Edwards 2012). Other studies have also
shown indoor dust sources from both Pb-based paint (Blette
2008) and legacy soil Pb concentrations (Mielke and Reagan
1998) to be major contributors to elevated BLL, and in some
cases to be a dominant source of exposure (Gasana et al. 2006).

The SHEDS–IEUBK model evaluation was stronger (lower
relative error between observed and modeled values) for earlier
NHANES time frames. BLLs have been decreasing over decades
and have continued to decrease since 2010 (U.S. EPA 2016b,
2016c; Laidlaw et al. 2016). Whether this recent change can be
explained by changing media concentrations, human activity pat-
terns (two main components of human exposure), or both,
remains unclear. Certainly, due to federal regulations, the re-
moval or reduction of Pb in gasoline, paint, and plumbing has
contributed (Council on Environmental Health 2016). The appa-
rent decline in time spent outdoors by children in the United
States (Roberts and Foehr 2008) may also have contributed by
reducing Pb soil ingestion. There is also seasonal variation in
BLL, with BLLs tending to be increased in the fall (e.g., see
Laidlaw et al. 2016), which we could not model using IEUBK.

There are some other limitations and uncertainties of this
analysis. Daily model average results for Pb in drinking water
related to the CDC reference value may be impacted by temporal
changes in NHANES in addition to model inputs changing over
time. Our approach involves selecting a BLL benchmark (e.g.,
CDC reference level that may change). The multimedia Pb mod-
eling analysis results are based on inputs for which available data
may not reflect recent exposures [e.g., U.S. Department of
Housing and Urban Development (HUD) soil Pb data is 2005–
2006]. With additional information from future field studies on
temporal changes in model inputs in recent years, further evalua-
tion of model predictions against temporal changes in recent
NHANES samplings would be possible. Because NHANES sam-
ple size is limited to represent the national population, collecting
and analyzing states’ blood Pb data may be useful for further
model evaluation.

Our modeling indicates that soil and dust ingestion is a domi-
nant exposure pathway. The soil/dust ingestion rate for children
is a key input to which model results are highly sensitive, and for
which data are limited and uncertain, especially for children
<2 y; for older ages, values are similar between Özkaynak et al.
(2011) used in this analysis and von Lindern et al. (2016), devel-
oped using different methodologies. If higher soil/dust ingestion
rate values were used with this analysis, modeled water Pb con-
centrations would be lower. Although we applied soil and dust

Table 1. Stochastic Human Exposure and Dose Simulation (SHEDS)–Integrated Exposure Uptake and Biokinetic (IEUBK) modeling blood lead level (BLL)
evaluation with 2009–2014 National Health and Nutrition Examination Survey (NHANES) blood data, longitudinal (30 d) with correlated key inputs.

Age group Source n Mean SD 50th GM GSD 95th 97.5th 99th %>3 lg=dL

1 to <2 y old Observed 475 1.47 1.30 1.12 1.16 1.92 3.60 5.54 7.90 6.95
Predicted 3,000 1.46 1.27 1.13 1.16 1.92a 3.58 4.60 6.41 7.70
Relative error 0% 1% 0% 1% 17% 19%

2 to <6 y old Observed 1,892 1.33 1.60 0.98 1.03 1.89 3.13 4.39 7.15 5.44
Predicted 3,000 1.55 1.28 1.20 1.25 1.88a 3.84 4.94 6.67 8.60
Relative error 17% 23% 21% 23% 12% 7%

Note: Relative error here is absolute value of predicted minus observed, divided by observed, multiplied by 100. GM, geometric mean; GSD, geometric standard deviation;
n= sample size; SD, standard deviation.
aThis GSD reflects the effect of exposure and biological variability on BLL.
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ingestion rates, which are among the lowest in the reported litera-
ture, our simulations overpredicted blood Pb for the most recent
2013–2014 NHANES cycle. An analysis of U.S. soil Pb studies
from 1970 to 2012 reported no association between year and me-
dian soil Pb concentration at a national scale, although within sin-
gle cities, soil Pb generally declined over time (Datko-Williams
et al. 2014); thus, we posit that changing human activity patterns,
such as soil/dust ingestion rates, may in part explain the BLL
declines.

In addition to soil/dust ingestion rate, other uncertainties in
this analysis are not accounting for seasonal variations (due to
lack of available data and use of IEUBK), model averaging time,
and how the coupled models capture biological and other sources

of variability in the GSD of BLLs. Because the 30-d exposure pe-
riod GSD reflects the effect of exposure variability, but not bio-
logical variability on BLL, our original results underpredicted
the GSD and upper percentiles of BLLs in NHANES, and
accordingly, overestimated Pb in water concentrations. Using a
2-d model averaging time does not align with IEUBK, but
shows closer comparison to NHANES BLL data and GSD, as
shown in Supplemental Materials (Figures S2–S3, and Table
S6). The 2-d results may approximate BLL accounting for bio-
logic variability by overestimating exposure variability. With
the approach for addressing the biological variability issue
described in the “Methods” section above, GSDs between
SHEDS–IEUBK estimated and NHANES measured BLLs are

Figure 3. Estimated contribution of exposure pathways to BLL, for national scale. Bar charts provide Pb daily exposure contributions from diet, soil and dust
ingestion, water, and inhalation from air for percentiles of the BLL distribution. The bars are 10% increments in the BLL distribution. The median BLL for
each increment is indicated under each bar. Exposure in the figure is adjusted for bioavailability of Pb in each exposure pathway. Panel (A), national scale for
0- to 6-mo-olds; Panel (B), national scale for 1- to <2-y-olds.
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very close (1.92 vs. 1.92 for 1- to <2-y-olds and 1.89 vs. 1.88
for 2- to <6-y-olds; see Table 1), and evaluation with NHANES
BLLs has been improved with adding biological variance, espe-
cially for higher percentiles (see Table 1 and Figure 2). More
BLL data being collected from states (McClure et al. 2016)
could help evaluate the biological variance correction factor
and which averaging time is more appropriate to guide a health-
based benchmark for Pb. State-collected BLL data will also
supplement NHANES BLL data, which may not be fully repre-
sentative of the true distribution of the U.S. population BLLs,
particularly at the tails.

While this work pertains to the U.S. population, the same
approach could be applied to other populations or countries, but
the results might be different. Although we simulated correlations
in Pb exposure among dust, soil, and water (using NHEXAS and
HUD data), stratified data by housing age, and assessed BLL at
upper percentiles of the BLL distribution, our current analyses
are not focused on specific at-risk populations, such as Flint,
Michigan, and East Chicago, Indiana, or other environmental jus-
tice communities or homes with high Pb in soil, dust, or water.
The household tap water monitoring scheme is a factor that influ-
ences estimated drinking water Pb concentrations and related

Figure 4. Illustrative graphs for determining household tap water Pb concentrations were calculated for different scenarios. y-Axis is modeled blood Pb level at
97.5th percentile of simulated population; x-axis is daily average water Pb concentration. The different colored lines represent different ages: orange is infants
age 0–6 mo, dark blue is 1- to <2-y-olds, and light blue is 2- to <6-y-olds.
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exposures. Given the spatial and temporal variability of household
Pb water concentrations, there are uncertainties in water Pb con-
centration data collected under the current LCR regulatory sam-
pling that limits the ability to predict Pb exposures from drinking
water. Local-scale data for multimedia model inputs and BLLs,
preferably collected simultaneously and with geospatial and tem-
poral resolution, would be beneficial for extending the coupled
model approach for other applications and specific communities.

Conclusions
This Pb modeling methodology and multimedia analysis advan-
ces scientific understanding of the relationship between Pb levels
in drinking water and BLLs in infants and young children, and
can inform a health-based benchmark for lead in drinking water.
The approach can also be applied to soil, dust, food, or other
environmental media to guide decision-making, considering
exposures aggregated from multiple media. While the focus of
this analysis is the national scale, to help inform national rule-
making for Pb policies addressing multimedia exposures and
public health outcomes, decisions such as setting a health-based
benchmark for Pb in drinking water under the revised LCR would
guide local-scale monitoring programs and Pb risk prevention
education efforts in communities, and help systematically identify
vulnerable communities such as Flint, Michigan, and East
Chicago, Indiana, in the United States.

In addition, this modeling approach developed for Pb could
apply to other multimedia contaminants for cumulative impact
analyses. While model evaluation provides confidence in the
results, more up-to-date data and information on key model
inputs (e.g., children’s soil/dust ingestion rate and bioavailability)
and BLLs would be helpful to refine model estimates for quanti-
fying and reducing uncertainties, and to focus on specific at-risk
populations and communities. Modeled estimates of BLL using
the SHEDS–IEUBK approach can be extended to quantify health
endpoints (e.g., IQ decrements) and to inform benefits analyses
for strengthening public health protection (e.g., considering bene-
fits of Pb service line replacement programs under the revised
LCR). This modeling approach, together with state-collected
BLL data and other data sets, e.g., for environmental justice vari-
ables and social determinants of health, could also be applied to
help identify the most at-risk communities for Pb exposures and
understand key factors for disparities; such analyses could inform
decisions for minimizing public health risks from national to
local scales.
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